博客
关于我
684. Redundant Connection
阅读量:264 次
发布时间:2019-03-01

本文共 4113 字,大约阅读时间需要 13 分钟。

In this problem, a tree is an undirected graph that is connected and has no cycles.

The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, ..., N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.

The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] with u < v, that represents an undirected edge connecting nodes u and v.

Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v] should be in the same format, with u < v.

Example 1:

Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given undirected graph will be like this:
  1
 / \
2 - 3
Example 2:
Input: [[1,2], [2,3], [3,4], [1,4], [1,5]]
Output: [1,4]
Explanation: The given undirected graph will be like this:
5 - 1 - 2
    |   |
    4 - 3
Note:
The size of the input 2D-array will be between 3 and 1000.
Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.

Update (2017-09-26):

We have overhauled the problem description + test cases and specified clearly the graph is an undirected graph. For the directed graph follow up please see Redundant Connection II). We apologize for any inconvenience caused.

来源:力扣(LeetCode)

链接:https://leetcode-cn.com/problems/redundant-connection
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

 

去掉无向图的一条边,让它变成一棵树。如果有多条边可以去,那么就返回数组中最后出现的边。

先找出环中的所有节点:相当于拓扑排序,每次都清除掉入度是1的节点,看最后剩下的节点,从数组中找到最后出现的。

​class Solution {    boolean [][]graph;    int lenght = 0;    Stack
>stack = new Stack<>(); public int[] findRedundantConnection(int[][] edges) { lenght = edges.length; int[]record = new int[edges.length + 1]; for (int i = 0; i < edges.length; i++) { record[edges[i][0]]++; record[edges[i][1]]++; } graph = new boolean[edges.length + 1][edges.length + 1]; for (int i = 0; i < edges.length; i++) { graph[edges[i][0]][edges[i][1]] = true; graph[edges[i][1]][edges[i][0]] = true; } Queue
queue = new ArrayDeque<>(); for (int i = 1; i <= lenght; i++) { if (record[i] == 1) { queue.add(i); record[i]--; } } while (!queue.isEmpty()) { int size = queue.size(); for (int i = 0; i < size; i++) { int t = queue.poll(); for (int j = 1; j <= lenght; j++) { if (graph[t][j]) { record[j]--; } if (record[j] == 1) { record[j]--; queue.add(j); } } } } int []ans = new int[2]; for (int i = edges.length - 1; i >= 0; i--) { for (int j = 1; j <= lenght; j++) { if (record[j] > 1) { if (edges[i][0] == j || edges[i][1] == j) { if (record[edges[i][0]] > 1 && record[edges[i][1]] > 1 ) { ans[0] = edges[i][0]; ans[1] = edges[i][1]; return ans; } } } } } return null; }}​

这题的另外一个方法,用一个数组root储存节点的关联,比如若 root[1] = 2,就表示1和2是相连的,root[2] = 3 表示2和3是相连的,如果新加 [1, 3] 的话,通过 root[1] = 2,再通过 root[2] = 3,说明1能到结点3,环是存在的;如果没有,那么要将1和3关联起来,让 root[1] = 3 

class Solution {    public int[] findRedundantConnection(int[][] edges) {        int [] root = new int[edges.length + 1];        Arrays.fill(root, -1);        for (int[] edge : edges) {            int x = find(root, edge[0]);            int y = find(root, edge[1]);            if (x == y) return edge;            root[x] = y;        }        return null;    }    public int find(int []root, int i) {        while (root[i] != -1) {            i = root[i];        }        return i;    }}

 

你可能感兴趣的文章
Mysql学习总结(70)——MySQL 优化实施方案
查看>>
Mysql学习总结(71)——MySQL 重复记录查询与删除总结
查看>>
Mysql学习总结(71)——数据库介绍(MySQL安装 体系结构、基本管理)再回顾
查看>>
Mysql学习总结(72)——MySQL 开发者开发,设计规范再总结
查看>>
Mysql学习总结(73)——MySQL 查询A表存在B表不存在的数据SQL总结
查看>>
Mysql学习总结(74)——慢SQL!压垮团队的最后一根稻草!
查看>>
Mysql学习总结(75)——并发量大、数据量大的互联网业务数据库设计军规
查看>>
Mysql学习总结(76)——MySQL执行计划(explain)结果含义总结
查看>>
Mysql学习总结(77)——温故Mysql数据库开发核心原则与规范
查看>>
Mysql学习总结(78)——MySQL各版本差异整理
查看>>
Mysql学习总结(79)——MySQL常用函数总结
查看>>
Mysql学习总结(7)——MySql索引原理与使用大全
查看>>
Mysql学习总结(80)——统计数据库的总记录数和库中各个表的数据量
查看>>
Mysql学习总结(81)——为什么MySQL不推荐使用uuid或者雪花id作为主键?
查看>>
Mysql学习总结(82)——MySQL逻辑删除与数据库唯一性约束如何解决?
查看>>
Mysql学习总结(83)——常用的几种分布式锁:ZK分布式锁、Redis分布式锁、数据库分布式锁、基于JDK的分布式锁方案对比总结
查看>>
Mysql学习总结(84)—— Mysql的主从复制延迟问题总结
查看>>
Mysql学习总结(85)——开发人员最应该明白的数据库设计原则
查看>>
Mysql学习总结(8)——MySql基本查询、连接查询、子查询、正则表达查询讲解
查看>>
Mysql学习总结(9)——MySql视图原理讲解与使用大全
查看>>